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A driven and braked wheel described by differential inclusion
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Summary. A wheel submitted to the friction forces exerted by the ground and by a brake system is studied. By using multivalued
operators, we can write the constitutive laws of the wheel asa differential inclusion. We can connect a chassis to one, two or four of
these wheels, by obtaining a differential inclusion of the same kind as the previous one. More generally, many applications can be
offered in the field of nonlinear dynamics of wheeled vehicles.

Introduction

For more details, the reader is referred to [1, 2].
This communication is devoted to the study of a simple wheel,subjected to a motor torque and two friction forces: one
exerted by the ground and one by a brake system. Some authors have already studied the complete mechanical behavior
of vehicle in non linear dynamics, for example in [3, 4, 5, 6, 7, 8] or [9] for continuous modelization of brake, or in the
numerous works of Hans Trueet al. in [10, 11, 12, 13, 14, 15, 16, 17]. This communication does not give as complete
a description as that found in these references. We focus instead on the following point: we try to show here that the
maximal monotone formalism used in [18, 19, 20, 21, 22, 23, 24] and applied to some elastoplastic models is well-
adapted to the description of the dynamical behavior of the wheel. This allows the differential equations to be correctly
written, and results concerning the existence, uniquenessand the convergence of the numerical scheme to be obtained.
Indeed, using multivalued operators and differential inclusions, we describe both kinds of behavior (static and dynamic)
of Coulomb’s friction law. Moreover, the studied model is more complete than that in [6], where the case in which the
wheel is locked by the brake system is not taken into account.
We first present the friction laws are presented in the simpler case of Coulomb’s law. Then, we study a very simple model:
wheels-chassis-ground. Theoretical existence and uniqueness and results are given, as well as a numerical scheme with
some simulations. Finally, some generalizations are proposed.

Presentation of the studied wheel and of the two friction laws

Coulomb’s law
We recall Coulomb’s friction law: consider the action

−→
R of a solid on an another solid. This action can be decomposed into

a normal component
−→
N , perpendicular to the tangential surface of contact between the solids, and a tangential component

−→
T . As long as the ratioT /N does not exceed a certain limitµf , there is adherence and the solid remains at rest. Once
this value is reached, there is slippage, we haveT /N = µf and the tangential force is opposed to the relative velocity
between the two solids. Some expressions ofµf are possible, for example according to the relative velocity. See for
example [3, 6].
We assume here that the dynamic friction coefficient (in slipor dynamic phase) is equal to the static friction coefficient
(in adherence or static phase), and that this coefficient is constant and uniform, as in [25], [5, chapter 5] or [6, Fig. 2.3c)
p. 85].

Friction laws of the wheel
We present the study of a simple wheel, subjected to a motor torque and two friction forces: the first one is exerted by
the ground and the second one by a brake system (see [1, 2]). These two forces are governed by the Coulomb’s law.
We assume that the ground is plane and horizontal and that thewheel moves in a plane. The wheel is defined by two
parameters:x, the abscissa of its center of gravity, andθ, the angle of rotation of the wheel (relative to a fixed direction)

(see Fig. 1(a)). Let
(

0,
−→
i ,

−→
j
)

be a reference frame. We assume that the wheel is in contact with the plane ground. The

O −→
i

−→
j

−→
T

−→
N

x

θ

(a) A simply braked wheel
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(b) A more complete model “two wheels-chassis-ground”

Figure 1: Two models with braked wheels
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ground action on the wheel is denoted by
−→
R =

−→
T +

−→
N = T

−→
i + N

−→
j where the numberT can be either positive or

negative and the numberN is positive. IfN is constant, then the Coulomb law for the force exerted by theground can be
written under the form:

T ∈ −αGσ
(

ẋ+Rθ̇
)

, (1)

whereαG > 0 is a constant and the multivalued maximal monotone operatorσ is defined by:

σ(x) =











−1 if x < 0,

1 if x > 0,

[−1, 1] if x = 0.

(2)

Like in [6, p. 146-150], the braking system is composed of twosymmetrical sheets that exert a pressure denotedαB ≥ 0
(which depends on time) on a disk fixed on the wheel. If the braking system is fixed to the chassis, with a fixed direction
according to the ground, then the angular relative velocitybetween the wheel and the brake isθ̇ and Coulomb’s law for
the braking torqueMB exerted on the wheel is written under the form:

MB ∈ −αBσ
(

θ̇
)

. (3)

This wheel is also submitted to a motor torqueM.

Study of a simple model: wheel-chassis-ground

The model of wheel, described in previous section, can be associated other solids in a very complex manner, as in
[3, 5, 6, 7]. Here, we study the simple case where a single wheel is fixed to a chassis with a fixed direction according to
the ground. This model is not physically realistic! However, we can assume that we have 2 or 4 identical wheels, with the
same forces, which keep the chassis horizontal. The vertical loads are assumed to be constant (N is then constant). We
set

x1 = ẋ, x2 = Rθ̇, f = −T , g = −MB. (4)

So, the dynamics of this model is given by the following inclusion:m denotes the wheel+chassis mass;R is the wheel’s
radius, andI its (plane) moment of inertia relative to its center. The twofunctionsM andαB are given, and we seekx1,
x2, f andg satisfying



















mẋ1 + f = 0,
I
R2 ẋ2 + f + g = M,

f ∈ αGσ (x1 + x2) ,

g ∈ αBσ (x2) ,

(5a)

with initial conditions
{

x1(0) = x1,0 = ẋ(0),

x2(0) = x2,0 = Rθ̇(0).
(5b)

By considering the state variableu(t) =
(

ẋ(t), Rθ̇(t)
)

in R
2, a smooth functionG from [0, T ] to R

2, a diagonal matrix

with non negative coefficientsD and a multivalued operatorAt (which depends on time) fromR2 to R
2, we seet that (5)

is equivalent to the following differential inclusion:

u̇(t) +DAt(u(t)) ∋ G(t), a.e. on(0, T ), (6)

with initial condition: u(0) = u0. For a fixed value oft, At is the subdifferential of the continuous convex functionφt

defined by
∀(x1, x2) ∈ R

2, φt(x1, x2) = αG|x1 + x2|+ αB(t)|x2|. (7)

If the functionαB is positive and belongs toL1(0, T ) and ifM belongs toL1(0, T ), then there exists a unique solution
u ∈ W 1,1(0, T ;R2) of (6) [26, Theorem 10.5]: we considerA = ∂φ whereφ(t, x) =

∑

i αi(t)φ(x), with φ convex and
αi positive.

Numerical simulations

In differential inclusion (6),A depends on time. In this case, results of existence,uniqueness and convergence of [21, 19]
remain still valid. We have to determine the resolvent of themaximal monotone operator(I + hDAαB

)
−1 whereD is

diagonal. Then, we obtain explicitly, for alln ∈ {0, . . . , N − 1}

Un+1 =
(

I + hDAαB(tn+1)

)

−1
(hG(tn) + Un) . (8)
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(a) Numerical results
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(b) Region numbers and theoretical boundaries

Figure 2: Numbers of the nine regions ofR
2: a different color is associated with each region number
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(b) Curves of the normalised torqueG and of the relative ve-
locity between the wheel and the chassis

Figure 3: Numerical simulations

We define two numbers calledεG ∈ {0, 1,−1} andεB ∈ {0, 1,−1} which characterize respectively the kind of the state
between the wheel and the ground and between the wheel and thebrake.
We may wish to determine it by minimizing non-differentiable convex functions, as explained in [27, exemple 2.3.4] or
[23, 24, Theorem 2.9 or section 2.5.6.2]. Here, the convex functions include absolute values, and we will see that the
search for minima reveals simple regions of the plane consisting of intersections of half-planes and particular valuesof
εG andεB. In Fig. 2, we can see nine regions ofR

2, each of them being defined by a different color. The central region
numbered 0 corresponds to case where the numbersεG andεB are equal to zero. The eight other regions numbered 1 to
8 correspond to cases whereεG or εB is equal to±1.
We can adapt the results of [19, 23, 24], to build anad hocnumerical scheme for the differential problem (6). The
convergence error is of order 1. Some numerical simulationsshows different behaviors of the wheel.
For example, we consider the following case: the braking torque varies greatly from zero to a maximum value and then
decreases back to zero (Fig. 3(a)). On Fig. 3(b), we plotted the normalized torqueG ∈ [−1, 1] (defined byg/αB, if
αB 6= 0 and null otherwise). The relative velocity between the wheel and the chassis is first non equal to zero, with a
normalized equal to−1. Then this velocity becomes null and, while the absolute velocity of the wheel is non equal to
zero, the normalized torque belongs to]− 1, 0].

Different possible generalizations

Example of a “two wheels-chassis-ground” model
Other more complete models can be built by associating one ormore wheels with some mechanical components. For
example the association of two (or four) wheels from above with chassis (see Fig. 1(b)) is still described by a differential
inclusion of the form (6) (inR3).
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More precisely, we now combine the elementary model of the wheel from previous section with an assembly in the
following way (see Fig. 1(b)): we consider a set of two wheels(or of four wheels, each identical and subjected to the
same forces), with centersOi, massesmi and moments of inertiaIi, wherei ∈ {1, 2}, and with a common radiusR. We

assume that the wheel is in contact with the ground, and denote the action of the ground on wheeli by
−→
Ri =

−→
Ti +

−→
Ni.

Each of the two wheels supports the chassis, of massM . We denote byx the abscissa of one point of the chassis and, as
previously, we label the rotation of the two wheels using theanglesθi, wherei ∈ {1, 2}. LetG be the center of mass of
the chassis. We writeL for the lengthO1O2, andλL and(1 − λ)L, with λ ∈]0, 1[, for the distances betweenO1 and the
projection ofG onto(O1O2), and betweenO2 and the projection ofG onto(O1O2). We will assume that a braking torque
MBi

(via a known pressureαBi
) and a motor torqueMi are applied to the wheels, withi ∈ {1, 2}, by two appropriate

members which are fixed with respect to the chassis. Each wheel is also submitted to a motor torqueMi.
Thus we have the following different equations: the friction laws are now

∀i ∈ {1, 2}, MBi
∈ −kiαBi

(t)σ
(

θ̇i

)

, (9a)

∀i ∈ {1, 2}, Ti ∈ −Niµfiσ
(

ẋ+Rθ̇i

)

, (9b)

whereµfi > 0 is a constant and the multivalued maximal monotone graphσ is defined by (2).

∀i ∈ {1, 2},
Ii
R
θ̈i − Ti −

MBi

R
= Mi, (9c)

(m1 +m2 +M)ẍ− T1 − T2 = 0. (9d)

We denote bya the ordinate of center of mass the of chassis according to thecenters of the wheels andL the distance
between the two axis of the wheels. Finally, equating the torque with the time-derivative of the angular momentum twice
(in the static case, and neglecting the aerodynamic action in the torque) and applying this at the pointsO1 andO2, along
with the vertical equilibrium of both wheels, gives

N1 = g(m2 + (1 − λ)M)−
aMẍ

L
−

1

L
(MB1

+MB2
+M1 +M2) , (9e)

N2 = g(m1 + λM) +
aMẍ

L
+

1

L
(MB1

+MB2
+M1 +M2) . (9f)

As in previous section, we set

x1 = ẋ, x2 = Rθ̇1, x3 = Rθ̇2, , (10a)

∀i ∈ {1, 2}, fi = −Ti, gi = −
MBi

R
. (10b)

If we assume
a ≪ L andẍ not too large (11)

(realistic assumption for a car for example), we can neglectaMẍ/L then we obtain

(m1 +m2 +M)ẋ1 + f1 + f2 = 0, (12a)

I1
R2

ẋ2 + f1 + g1 = M1, (12b)

I2
R2

ẋ3 + f2 + g2 = M2, (12c)

N1 = g(m2 + (1− λ)M)−
1

L
(M1 +M2) +

R

L
(g1 + g2) , (12d)

N2 = g(m1 + λM) +
1

L
(M1 +M2)−

R

L
(g1 + g2) , (12e)

f1 ∈ N1µf1σ (x1 + x2) , (12f)

f2 ∈ N2µf2σ (x1 + x3) , (12g)

g1 ∈ αB1
σ (x2) , (12h)

g2 ∈ αB2
σ (x3) . (12i)

These equations are valid as long as

N1 ≥ 0, (12j)

N2 ≥ 0. (12k)
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Figure 4: Some examples of friction laws

By using [26, Theorem 9.2], we have existence of solution of (12). Contrary on results on previous section, we have not
uniqueness of solutions of (12), as long as the normal forcesNi depend on solutionsvia Mi in (12d)-(12e). However, if
we assume that

the friction torques−g1 and−g2 appearing in (12d) and (12e)

are negligible compared to the torque of the chassis weight (13)

–which is mechanically realistic– we can thus replace (12d)and (12e) by

N1 = g(m2 + (1 − λ)M)−
1

L
(M1 +M2) , (14a)

N2 = g(m1 + λM) +
1

L
(M1 +M2) . (14b)

In this case, equations (12) can be rewritten under the form (6) (in R
3). As previously, uniqueness and convergence of

numerical scheme are then obtained.

More complete mechanical models
The different dynamics of the different constituents of a vehicle may be considered to be longitudinal, transverse and
vertical, while taking into account in a more systematic waythe different non-linear sources (damper, tyre), and also con-
sidering the different transmission devices of the brakingor motor torque. In every case, we put the equations governing
the motion into the formu′(t) ∈ F(t, u(t)) whereF is a multivalued mapping from[0, T ]×R

p to the set of partsP (Rp)
of Rp.

Other friction laws
Like in [28] or [23, 24, chapter 7], we could also replace the simpler Coulomb friction laws by more realistic frictions
law (see for example [6, 5, 3]). Indeed, this is just a matter of adding a nonlinear, continuous term to operatorσ: (1)-(3)

are replaced byT ∈ −αGA
(

ẋ+Rθ̇
)

or MB ∈ −αBA
(

θ̇
)

whereA = αSσ + Ψ, whereαS is non negative andΨ is

smooth enough (see Fig. 4).

Conclusion and perspectives

1. Multivalued description for simple wheel or associated to chassis providing classical dynamics vehicle problems
[6, 5, 3].

2. Huge advantage of numericalad hocscheme: low order of convergence (1) but robust andnon event-driven.

3. Encountered difficulties in a similar context [10, 11, 12,13, 14, 15, 16, 17] avoided here by using this scheme!
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The perspective are the following;

1. Allow unilateral contact to take into account motor or braking torques with high variations or for light vehicules
(bike, moto ...) by using work of P. Ballard [29] and without assumption (12j)-(12k) ;

2. Treat non uniqueness problems and/or avoid assumption (13) by using for example works [29, 30] ;

3. Associate this scheme with high order scheme (on intervals without change of state).
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