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A driven and braked wheel described by differential inclusion
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Summary A wheel submitted to the friction forces exerted by the geband by a brake system is studied. By using multivalued
operators, we can write the constitutive laws of the wheel diferential inclusion. We can connect a chassis to one,dmfour of
these wheels, by obtaining a differential inclusion of thene kind as the previous one. More generally, many apmicatcan be
offered in the field of nonlinear dynamics of wheeled vetscle

Introduction

For more details, the reader is referred to [1, 2].

This communication is devoted to the study of a simple whaddjected to a motor torque and two friction forces: one
exerted by the ground and one by a brake system. Some auth@slieady studied the complete mechanical behavior
of vehicle in non linear dynamics, for example in [3, 4, 5, 68For [9] for continuous modelization of brake, or in the
numerous works of Hans Trwet al. in [10, 11, 12, 13, 14, 15, 16, 17]. This communication doesgin®e as complete

a description as that found in these references. We foctsaidon the following point: we try to show here that the
maximal monotone formalism used in [18, 19, 20, 21, 22, 23,a24 applied to some elastoplastic models is well-
adapted to the description of the dynamical behavior of theek This allows the differential equations to be corsectl
written, and results concerning the existence, uniquealedshe convergence of the numerical scheme to be obtained.
Indeed, using multivalued operators and differentialis@ns, we describe both kinds of behavior (static and dyelam

of Coulomb’s friction law. Moreover, the studied model is ma@omplete than that in [6], where the case in which the
wheel is locked by the brake system is not taken into account.

We first present the friction laws are presented in the sinmgalee of Coulomb’s law. Then, we study a very simple model:
wheels-chassis-ground. Theoretical existence and un&gseand results are given, as well as a numerical scheme with
some simulations. Finally, some generalizations are me@o

Presentation of the studied wheel and of the two friction laws

Coulomb’s law
We recall Coulomb’s friction law: consider the actia“lof a solid on an another solid. This action can be decompaosed i
a normal componen?/, perpendicular to the tangential surface of contact batwiee solids, and a tangential component

. As long as the ratid /N does not exceed a certain limit, there is adherence and the solid remains at rest. Once
this value is reached, there is slippage, we HAy&/ = 1 and the tangential force is opposed to the relative velocity
between the two solids. Some expressiong pfare possible, for example according to the relative vejocee for
example [3, 6].
We assume here that the dynamic friction coefficient (in sfiglynamic phase) is equal to the static friction coefficient
(in adherence or static phase), and that this coefficierdnstant and uniform, as in [25], [5, chapter 5] or [6, Fig.c2.3
p. 85].

Friction laws of the wheel

We present the study of a simple wheel, subjected to a motguéocand two friction forces: the first one is exerted by
the ground and the second one by a brake system (see [1, 2seTivo forces are governed by the Coulomb’s law.
We assume that the ground is plane and horizontal and thattibel moves in a plane. The wheel is defined by two
parametersz, the abscissa of its center of gravity, ahdhe angle of rotation of the wheel (relative to a fixed dii@t}

(see Fig. 1(a)). Le((), ?, 7) be a reference frame. We assume that the wheel is in conttictivei plane ground. The
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(a) A simply braked wheel (b) A more complete model “two wheels-chassis-ground”

Figure 1: Two models with braked wheels
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ground action on the wheel is denotedﬁ/: ? +N = 7'7 + N? where the numbey can be either positive or
negative and the numbdf is positive. IfA/ is constant, then the Coulomb law for the force exerted bygtbeand can be
written under the form:

T € —ago (:c + Ré) , )
whereag > 0 is a constant and the multivalued maximal monotone opesai®defined by:
-1 if 2 <0,
o(z) =<1 if x>0, (2)
[-1,1] ifz=0.

Like in [6, p. 146-150], the braking system is composed of synmmetrical sheets that exert a pressure deneted 0
(which depends on time) on a disk fixed on the wheel. If the ibgakystem is fixed to the chassis, with a fixed direction
according to the ground, then the angular relative veldmitiyveen the wheel and the brakeliand Coulomb’s law for
the braking torqueV 5 exerted on the wheel is written under the form:

Mp € —apo (9) . 3)
This wheel is also submitted to a motor torqhe
Study of a simple model: wheel-chassis-ground

The model of wheel, described in previous section, can becided other solids in a very complex manner, as in
[3, 5, 6, 7]. Here, we study the simple case where a single Whéiged to a chassis with a fixed direction according to
the ground. This model is not physically realistic! Howewee can assume that we have 2 or 4 identical wheels, with the
same forces, which keep the chassis horizontal. The veltiads are assumed to be constakitié then constant). We
set

€Tl = :'Cv T2 = R97 f = _Tv g = _MB' (4)

So, the dynamics of this model is given by the following irsttin: m denotes the wheel+chassis maBds the wheel's
radius, and its (plane) moment of inertia relative to its center. The fuctionsM andap are given, and we seek,
x2, [ andg satisfying

mj?l + f = 07
1 —
R2I2+f+g M7 (5a)
f€eago (14 z2),
g € apo (,TQ) ,
with initial conditions
z1(0) =z10 = 117(0), (5b)
,TQ(O) = xg,o = R@(O)

By considering the state variablgt) = (:’c(t), Ré(t)) in R?, a smooth functior; from [0, 7] to R?, a diagonal matrix
with non negative coefficient® and a multivalued operatot; (which depends on time) frof? to R?, we seet that (5)
is equivalent to the following differential inclusion:

u(t) + DA (u(t)) > G(t), a.e.on(0,T), (6)

with initial condition: (0) = wuo. For a fixed value of, A; is the subdifferential of the continuous convex functign
defined by

V(z1,22) € R?, ¢y(a1,m2) = agler + @] + ap(t)|zs|. (7)
If the functiona g is positive and belongs tb! (0, 7') and if M belongs taL!(0, T'), then there exists a unique solution
u € WhH1(0,T;R?) of (6) [26, Theorem 10.5]: we considér= d¢ whereg(t,z) = >, a;(t)¢(x), with ¢ convex and
«; positive.

Numerical simulations

In differential inclusion (6)A depends on time. In this case, results of existence,unépseand convergence of [21, 19]
remain still valid. We have to determine the resolvent ofrtieximal monotone operatéf + hDA,,) " whereD is
diagonal. Then, we obtain explicitly, for all € {0,..., N — 1}

U™ = (T4 hDAgy,,0)  (hG(t) +U™). (8)
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(a) Numerical results (b) Region numbers and theoretical boundaries

Figure 2: Numbers of the nine regions®t: a different color is associated with each region number
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time locity between the wheel and the chassis

Figure 3: Numerical simulations

We define two numbers called; € {0,1, —1} andep € {0, 1, —1} which characterize respectively the kind of the state

between the wheel and the ground and between the wheel abdbtke

We may wish to determine it by minimizing non-differentialgionvex functions, as explained in [27, exemple 2.3.4] or
[23, 24, Theorem 2.9 or section 2.5.6.2]. Here, the convegtfans include absolute values, and we will see that the
search for minima reveals simple regions of the plane ctingisf intersections of half-planes and particular valaés

eq andep. In Fig. 2, we can see nine regionsl®f, each of them being defined by a different color. The cenggilon
numbered O corresponds to case where the numbeasnde 5 are equal to zero. The eight other regions numbered 1 to

8 correspond to cases wheig or e is equal tot1.

We can adapt the results of [19, 23, 24], to buildahhocnumerical scheme for the differential problem (6). The

convergence error is of order 1. Some numerical simulasbiosvs different behaviors of the wheel.

For example, we consider the following case: the brakinguervaries greatly from zero to a maximum value and then
decreases back to zero (Fig. 3(a)). On Fig. 3(b), we plotiechbrmalized torqué&’ € [—1, 1] (defined byg/ap, if

ap # 0 and null otherwise). The relative velocity between the wiaeel the chassis is first non equal to zero, with a
normalized equal te-1. Then this velocity becomes null and, while the absolutecig} of the wheel is non equal to

zero, the normalized torque belongg te 1, 0].

Different possible generalizations

Example of a “two wheels-chassis-ground” model

Other more complete models can be built by associating omeooe wheels with some mechanical components. For
example the association of two (or four) wheels from abowb whassis (see Fig. 1(b)) is still described by a diffesdnti

inclusion of the form (6) (irR?).
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More precisely, we now combine the elementary model of theeMfrom previous section with an assembly in the
following way (see Fig. 1(b)): we consider a set of two whedelsof four wheels, each identical and subjected to the
same forces), with cente€$;, massesn; and moments of inertig;, wherei € {1, 2}, and with a common radiuB. We
assume that the wheel is in contact with the ground, and dehetaction of the ground on whegby 73: = ?1 + Nz
Each of the two wheels supports the chassis, of Mas¥Ve denote by: the abscissa of one point of the chassis and, as
previously, we label the rotation of the two wheels usingahgles;, wherei € {1,2}. Let G be the center of mass of
the chassis. We writé for the lengthO; 0, and\L and(1 — A\)L, with A €]0, 1], for the distances between and the
projection ofG onto(O;03), and betwee), and the projection off onto(O; 05). We will assume that a braking torque
M p, (viaa known pressure g,) and a motor torquéM; are applied to the wheels, withe {1,2}, by two appropriate
members which are fixed with respect to the chassis. Eachlvgso submitted to a motor torquiet;.

Thus we have the following different equations: the frintlaws are now

Vie{1,2}, Mp, € —kap,(t)o (9‘1-) : (9a)
Vie (1,2}, Tie-Nipupo (x + Réi) , (9b)

wherepuy, > 0 is a constant and the multivalued maximal monotone geajsidefined by (2).

Vi € {1,2}, 591—7;— 7 =M, (9¢)
(mi+mo+M)Z—T1 —T2=0. (9d)

We denote by: the ordinate of center of mass the of chassis according toghters of the wheels andthe distance
between the two axis of the wheels. Finally, equating thguemwith the time-derivative of the angular momentum twice
(in the static case, and neglecting the aerodynamic agtitimei torque) and applying this at the poiats andO-, along
with the vertical equilibrium of both wheels, gives

Mz 1
Ny = glms + (1= NM) = Z5= = & (M, + M, + My + M), (%)
Mz 1
Ny = glmi +AM) + “== + = (Mg, + Mp, + M1+ Ms). (99
As in previous section, we set
T =, X9= Rél, T3 = Rég, s (10a)
Vie{12), fi=-T, g=-"05 (100)
If we assume
a < L and# not too large (12)
(realistic assumption for a car for example), we can neglé¢t:/ L then we obtain
(m1+ma+ M)i + f1 + f2=0, (12a)
I .
R_12@+f1 +9g1 = My, (12b)
I .
Tads +J2+ g2 = Mo, (12¢)
1 R
N1:g(mz‘i'(l—)\)M)—Z(M1+M2)+Z(91+92)7 (12d)
1 R
Nz = g(mi +AM) + = (Mi + Mz) = = (91 + 92) , (12e)
fi € Nipg, o (21 + 2), (12f)
f2 € Nopigyo (21 + 23) (129)
g1 € ap, 0 (IQ) ) (12h)
g2 € ap,o (,Tg) . (12|)
These equations are valid as long as
Ny >0, (12j)

Ny > 0. (12K)
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Figure 4: Some examples of friction laws

By using [26, Theorem 9.2], we have existence of solutioril@).( Contrary on results on previous section, we have not
unigueness of solutions of (12), as long as the normal fokedepend on solutiongia M in (12d)-(12e). However, if
we assume that

the friction torques-g; and—gs appearing in (12d) and (12¢)
are negligible compared to the torque of the chassis weighB) (

—which is mechanically realistic— we can thus replace (B2d) (12€) by

Ni = g(ma + (1 = A)M) (M1 + My), (14a)

1
L
No = g(my + AM) + % (M1 + My). (14Db)

In this case, equations (12) can be rewritten under the fé)nirf R3). As previously, uniqueness and convergence of
numerical scheme are then obtained.

More complete mechanical models

The different dynamics of the different constituents of &igke may be considered to be longitudinal, transverse and
vertical, while taking into account in a more systematic wagy different non-linear sources (damper, tyre), and adso ¢
sidering the different transmission devices of the brakinmotor torque. In every case, we put the equations govgrnin
the motion into the form/ () € F(¢, u(t)) whereF is a multivalued mapping frord, 7’| x R? to the set of part® (R?)

of RP.

Other friction laws
Like in [28] or [23, 24, chapter 7], we could also replace themer Coulomb friction laws by more realistic frictions
law (see for example [6, 5, 3]). Indeed, this is just a matfexduling a nonlinear, continuous term to operatof1)-(3)

are replaced by € —agA (:c + Ré) orMp € —agA (9) whereA = ago + ¥, whereag is non negative and is
smooth enough (see Fig. 4).

Conclusion and perspectives

1. Multivalued description for simple wheel or associatedhassis providing classical dynamics vehicle problems
[6, 5, 3].

2. Huge advantage of numeriad hocscheme: low order of convergence (1) but robustamad event-driven

3. Encountered difficulties in a similar context [10, 11, 13, 14, 15, 16, 17] avoided here by using this scheme!
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The perspective are the following;

1. Allow unilateral contact to take into account motor orking torques with high variations or for light vehicules
(bike, moto ...) by using work of P. Ballard [29] and withossamption (12))-(12K) ;

2. Treat non uniqueness problems and/or avoid assumpt®)m{lusing for example works [29, 30] ;
3. Associate this scheme with high order scheme (on intewihout change of state).
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